0%

二叉树的实现与遍历

二叉树是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。

二叉树的定义

二叉树(BinaryTree)是n(n≥0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的、分别称作这个根的左子树和右子树的二叉树组成。
这个定义是递归的。由于左、右子树也是二叉树,因此子树也可为空树。下图中展现了五种不同基本形态的二叉树。

其中 (a) 为空树, (b) 为仅有一个结点的二叉树, (c) 是仅有左子树而右子树为空的二叉树, (d) 是仅有右子树而左子树为空的二叉树, (e) 是左、右子树均非空的二叉树。这里应特别注意的是,二叉树的左子树和右子树是严格区分并且不能随意颠倒的,图 (c) 与图 (d) 就是两棵不同的二叉树。

二叉树的遍历

对于二叉树来讲最主要、最基本的运算是遍历。

遍历二叉树 是指以一定的次序访问二叉树中的每个结点。所谓访问结点是指对结点进行各种操作的简称。例如,查询结点数据域的内容,或输出它的值,或找出结点位置,或是执行对结点的其他操作。遍历二叉树的过程实质是把二叉树的结点进行线性排列的过程。假设遍历二叉树时访问结点的操作就是输出结点数据域的值,那么遍历的结果得到一个线性序列。

从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:

  1. 访问结点本身(N),
  2. 遍历该结点的左子树(L),
  3. 遍历该结点的右子树(R)。
    以上三种操作有六种执行次序:
     NLR、LNR、LRN、NRL、RNL、RLN。

    注意:
    前三种次序与后三种次序对称,故只讨论先左后右的前三种次序。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

二叉树的实现

首先创建一棵二叉树如下图,然后对这颗二叉树进行遍历操作(遍历操作的实现分为递归实现和非递归实现),同时还提供一些方法如获取双亲结点、获取左孩子、右孩子等。

Java代码实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import java.util.Stack;

/**
* 二叉树的链式存储
* @author WWX
*/
public class BinaryTree {


private TreeNode root=null;

public BinaryTree(){
root=new TreeNode(1,"rootNode(A)");
}

/**
* 创建一棵二叉树
* <pre>
* A
* B C
* D E F
* </pre>
* @param root
* @author WWX
*/
public void createBinTree(TreeNode root){
TreeNode newNodeB = new TreeNode(2,"B");
TreeNode newNodeC = new TreeNode(3,"C");
TreeNode newNodeD = new TreeNode(4,"D");
TreeNode newNodeE = new TreeNode(5,"E");
TreeNode newNodeF = new TreeNode(6,"F");
root.leftChild=newNodeB;
root.rightChild=newNodeC;
root.leftChild.leftChild=newNodeD;
root.leftChild.rightChild=newNodeE;
root.rightChild.rightChild=newNodeF;
}


public boolean isEmpty(){
return root==null;
}

//树的高度
public int height(){
return height(root);
}

//节点个数
public int size(){
return size(root);
}


private int height(TreeNode subTree){
if(subTree==null)
return 0;//递归结束:空树高度为0
else{
int i=height(subTree.leftChild);
int j=height(subTree.rightChild);
return (i<j)?(j+1):(i+1);
}
}

private int size(TreeNode subTree){
if(subTree==null){
return 0;
}else{
return 1+size(subTree.leftChild)
+size(subTree.rightChild);
}
}

//返回双亲结点
public TreeNode parent(TreeNode element){
return (root==null|| root==element)?null:parent(root, element);
}

public TreeNode parent(TreeNode subTree,TreeNode element){
if(subTree==null)
return null;
if(subTree.leftChild==element||subTree.rightChild==element)
//返回父结点地址
return subTree;
TreeNode p;
//现在左子树中找,如果左子树中没有找到,才到右子树去找
if((p=parent(subTree.leftChild, element))!=null)
//递归在左子树中搜索
return p;
else
//递归在右子树中搜索
return parent(subTree.rightChild, element);
}

public TreeNode getLeftChildNode(TreeNode element){
return (element!=null)?element.leftChild:null;
}

public TreeNode getRightChildNode(TreeNode element){
return (element!=null)?element.rightChild:null;
}

public TreeNode getRoot(){
return root;
}

//在释放某个结点时,该结点的左右子树都已经释放,
//所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放
public void destroy(TreeNode subTree){
//删除根为subTree的子树
if(subTree!=null){
//删除左子树
destroy(subTree.leftChild);
//删除右子树
destroy(subTree.rightChild);
//删除根结点
subTree=null;
}
}

public void traverse(TreeNode subTree){
System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
traverse(subTree.leftChild);
traverse(subTree.rightChild);
}

//前序遍历
public void preOrder(TreeNode subTree){
if(subTree!=null){
visted(subTree);
preOrder(subTree.leftChild);
preOrder(subTree.rightChild);
}
}

//中序遍历
public void inOrder(TreeNode subTree){
if(subTree!=null){
inOrder(subTree.leftChild);
visted(subTree);
inOrder(subTree.rightChild);
}
}

//后续遍历
public void postOrder(TreeNode subTree) {
if (subTree != null) {
postOrder(subTree.leftChild);
postOrder(subTree.rightChild);
visted(subTree);
}
}

//前序遍历的非递归实现
public void nonRecPreOrder(TreeNode p){
Stack<TreeNode> stack=new Stack<TreeNode>();
TreeNode node=p;
while(node!=null||stack.size()>0){
while(node!=null){
visted(node);
stack.push(node);
node=node.leftChild;
}
(stack.size()>0){
node=stack.pop();
node=node.rightChild;
}
}
}

//中序遍历的非递归实现
public void nonRecInOrder(TreeNode p){
Stack<TreeNode> stack =new Stack<BinaryTree.TreeNode>();
TreeNode node =p;
while(node!=null||stack.size()>0){
//存在左子树
while(node!=null){
stack.push(node);
node=node.leftChild;
}
//栈非空
if(stack.size()>0){
node=stack.pop();
visted(node);
node=node.rightChild;
}
}
}

//后序遍历的非递归实现
public void noRecPostOrder(TreeNode p){
Stack<TreeNode> stack=new Stack<BinaryTree.TreeNode>();
TreeNode node =p;
while(p!=null){
//左子树入栈
for(;p.leftChild!=null;p=p.leftChild){
stack.push(p);
}
//当前结点无右子树或右子树已经输出
while(p!=null&&(p.rightChild==null||p.rightChild==node)){
visted(p);
//纪录上一个已输出结点
node =p;
if(stack.empty())
return;
p=stack.pop();
}
//处理右子树
stack.push(p);
p=p.rightChild;
}
}
public void visted(TreeNode subTree){
subTree.isVisted=true;
System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
}


/**
* 二叉树的节点数据结构
* @author WWX
*/
private class TreeNode{
private int key=0;
private String data=null;
private boolean isVisted=false;
private TreeNode leftChild=null;
private TreeNode rightChild=null;

public TreeNode(){}

/**
* @param key 层序编码
* @param data 数据域
*/
public TreeNode(int key,String data){
this.key=key;
this.data=data;
this.leftChild=null;
this.rightChild=null;
}


}


//测试
public static void main(String[] args) {
BinaryTree bt = new BinaryTree();
bt.createBinTree(bt.root);
System.out.println("the size of the tree is " + bt.size());
System.out.println("the height of the tree is " + bt.height());

System.out.println("*******(前序遍历)[ABDECF]遍历*****************");
bt.preOrder(bt.root);

System.out.println("*******(中序遍历)[DBEACF]遍历*****************");
bt.inOrder(bt.root);

System.out.println("*******(后序遍历)[DEBFCA]遍历*****************");
bt.postOrder(bt.root);

System.out.println("***非递归实现****(前序遍历)[ABDECF]遍历*****************");
bt.nonRecPreOrder(bt.root);

System.out.println("***非递归实现****(中序遍历)[DBEACF]遍历*****************");
bt.nonRecInOrder(bt.root);

System.out.println("***非递归实现****(后序遍历)[DEBFCA]遍历*****************");
bt.noRecPostOrder(bt.root);
}
}